Fundamentals of Data Structures with C 201

6.7.1 Creating a singly linked list : Create() function

We expect Create () function to accept the address of the first node and element to
be added to the linked list. It should return the modified linked list to the calling
program. We will show how to start from an empty list, creation and add nodes one by
one. This function adds only one node at a time. To add more nodes, it should be
invoked many times.

To build a linked list we can add at the front of the first node or add at the end. In
this section we shall follow the earlier approach. Figure 6.5 shows a sample list with
two elements (do not worry about how these two elements have been added!).

first

—> 10|11 20}/

(a) Linked list

q

—{x] |

(b) New node
first

7;1101—Hzo1/1'

o
Fig. 6.5 Creation of a linked list (c) New node added at front

The variable q is a pointer to this new node to be added (Figure 6.5(b)). To attach this
new node at front of first node, the links shown in dotted lines must be done - see
Figure 6.5(c). The statements required to do this are,

g->link = first;
first = q;
return first;

Now the question is, whether the same piece of code will work for first = NULL?
We will see soon (see Figure 6.6).
Assume, first = NULL;

(a) Empty list
q

(b) New node to be added
[first = NULL

Fig. 6.6 Adding multiple nodes (c) Node x added to front, when first = 0

202

Chapter6 » Linked Lists

when we execute the code earlier with first = NULL, we have

g->link = NULL;

first = q;

return first;
Indeed it has created the first node successfully. Hence, the same piece of code works
for all conditions and the complete code for Create() function appears in
Program 6.1.

Program 6.1
Linked List creation

NODE Create (NODE first, int x)

{ /* adds x to the front of the list */
NODE q;
q = (NODE) malloc (sizeof(struct List)):
g->info = x;
g->link = first; /* add to front of first */
first = q;
return first;

Before Create () is invoked, you must ensure that £irst is initialized to NULL.
The following main program does the initialization and builds a linked list of 10
elements with info 1,2,3,....,,10.

void main()

{
first = NULL;

for (i = 1; i <= 10; i++)
first = Create(first, i);

6.7.2 Inserting a node into a linked list : Insert() function

This section develops a function Insert () to insert an element x after the kth
element. The parameter k can take only values from 0 to maximum length of the list. If
k = 0, the node x will be added before the first node and if k > length of the list an
error will be displayed. Figure 6.7 shows the method in which the node x be added after
the kth node.

Fundamentals of Data Structures with C 203

p

first 1 kth node last node

71
]

reestesnanseansasnst

x 10|_l_>|20|_+_) rsol:l”a?()lj—)__

0 k+0 k = last node

Fig. 6.7 Inserting x after kth element

Before we attempt to insert element x, firstly we should know whether the kth element
exists in the list or not. There are two situations for the error message to the displayed.

(1) Whenk <0.
(2) When k > length of the list.

Putting all the points together an algorithm shown in Algorithm 6.1 can be written.

Algorithm 6.1 to insert x after kth

Algorithm Insert(first, k, x)

{

// first - address of the first node.
// k - kth element.
// x — to be inserted after kth element.
if(k < 0)
{
print (“Error”);
return first;

}
p = first;
for (index = 1; p && index < k; index++)

p = link(p); // move p to kth position.
if (k > 0 && !p) // takes care of empty list also
{

print(“out of 1list”);

return first;

}

// found kth position, so insert x
g = getnode();

info(qg) = x;
if (k) //insert after p
{

link(q) = link(p);

link(p) = q;

'204 Chapter6 » | Linked Lists
else // insert at front of first

link(qg) = first;
first = q;

}

return first;

}

To implement Algorithm 6.1 in C language you need minimum effort and so the code is
shown in Program 6.2 without any explanation.

Program 6.2
Insertion of x after kth position

NODE Insert (NODE first, int k, int x)
{ /* Insert x after kth element */
/* If no kth element, then print error */

NODE g, current;

int index;

current = first;

if (k < 0)

{
printf ("Error-no insertion\n");
return first;

}

/* current points to the kth element */
for (index = 1; current && index < k; index++)
current = current->link;

if (k > 0 && !current)

{
printf ("Error-Out of bound\n");
return first;

}

/* Insert x */

q = (NODE) malloc (sizeof(struct List));
g->info = x;

if (k) /* k > 0, so insert after current */
{ .
g->link = current->link;
current->link = q;

}

else /* k = 0, so insert as first element */

Fundamentals of Data Structures with C 205

{
g->link = current;
first = q;

}

return first;

The for loop scans through the list looking for the kth node. It uses index as the
index variable. The scanning stops when either the kth node is found or end of list is
reached. If p = NULL with k > 0, this means that it is out of bound and hence node x
cannot be inserted, else you can insert either at front of the first node or after kth node.
So, variable p points to the kth node. One final confirmation is to be done to check
whether the same code works when kth node is the last node (Check it yourself).

6.7.3. Deleting an element x : LDelete()

The objective of this function is to delete a node whose info field contains x and return
the modified list. It is invoked with two parameters,

(1) The pointer to the linked list.
(2) The element to be deleted.

The return type is selected as NODE (because the modified list should be returned to the
calling program). Now, we will develop the code for this problem first by explaining
with a diagram (see Figure 6.8). The Figure shows for two cases of x,

(1) when x = 20 and
(2) when x = 60.

pred current
! :
first (0] 10 [3> 50]; /,,75 3 -390]/]

when x=20 ' when x =60

Fig. 6.8 Deleting node x
We need the following six steps to carry out the task of deletion.

Step 1: If the list is empty, then return 0.

Step 2: Maintain a pointer pred to move behind current.

Step 3: Find the address of the node to be deleted using current and
updating pred appropriately.

Step 4: If current runs out of list — error (node not found)
else link(pred) = link(current);

Step S: free(current)

Step 6: retumn first;

206 Chapter6 » Linked Lists

The C code for function LDelete () appears in program 6.3. When current points
to first, pred should be one node behind it, which is NULL. Hence, it is initialized
to NULL. The while loop may get terminated when either current reaches end of
list (node not found case) or node x has been found.

Program 6.3
Deletion of a node

NODE LDelete (NODE first , int x, int *flag)
{
NODE current, pred;
if (!first) /* empty list */
{
*flag = 0;
return first;

}

/* more than one node case */
pred = NULL; current = first;
while (current && (current->info != x))
{
pred = current;
current = current->link;

}
if (current == NULL) *flag = 0;/* node not found */
else if (!pred) /* key is first node */
{
first = first->link;
*flag = 1;
}

else /* middle node */
{

pred->link = current->link; /* remove */
*flag = 1;
}

return first;

If it is found, delete using the statement,
pred->link = current->link;

Fundamentals of Data Structures with C 207

This statement drops the element pointed by current. Now this node can be freed.
The linking is shown with broken lines in Figure 6.8.

6.7.4 Length of a Linked List: Length() function

This function accepts the linked list as its parameter and returns the number of nodes
(i.e., length) in the list. Obviously the return type is integer and there is no need to
return the list, because we do not modify the list within the function. See Program 6.4
for the C code of Length () function.

Program 6.4
List Length
int Length (NODE first)
{
int len = 0; /* counter */
while (first)
{
len++;
first = first->link;
}
return len;
}

The function uses the counter count with initial value 0 and incremented as we move
through the list until we reach the end of the list. Finally the local variable 1en with the
number of nodes counted is returned to the calling program.

6.7.5 Searching a node in linked list: Search() function

Assume that we are given a key node x (info field) and our aim is to search the list to
find whether this node exists in the linked list or not. If it is found, return the position of
x (nodes are numbered as 1 for the first node, 2 for the second node, and so on).
Supposing, if the node is not found, then a 0 is returned (see Program 6.5).

Prégram 6.5
Search for a key

int Search (NODE first, int x)

{
int index = 1; /* indexing the nodes */
while (first && first->info != x)

208

Chapter6 » Linked Lists
{
index++;
first = first->link;
}
if (first)

return index; /* key found */
return 0; /* key not found */

Since the node number is not stored in the node itself, we maintain a variable index to
return the position of x. Similar to Length (), the return type for this function is also
int. The while loop checks for either the end of the list (node not found) or the key
node x (found). When the list is scanned, index is incremented to remember the node
number.

When current is not NULL, position of x is nothing but the value of index and
its value is returned, otherwise a 0 is returned.

6.7.6 Finding the kth element: Find()

In the function Find (k, x), k is the kth element in the list. If such element exists, it
is set to x and a true is returned to the calling routine (hence it should be a reference
parameter). If the value of k is invalid, that is no kth element, then return false. Hence,
the return type for Find () is int. For example, a sample list shown if Figure 6.9
gives answers for various values of k as,

L] o] 5 [l {16

first

Fig. 6.9 A sample linked list

1. Find(2,x) = x = 10 and return value is true
2. Find6,x) = x = ? and return value is false
3. Find(0,x) = X = ? and return value is false
4. Find(5,x) = X = 16 and returned value is true

The C code is shown for the function Find()in Program 6.6. The while loop
searches for the kth node using index (starting from node 1). In most of the linked list
based programs, you will have an && condition for the termination of the loop, in case
if it goes out of the list. Here again we have such a condition

while (current && index < k) {. . .}

If current is NULL, the required kth element is not found and false is returned.

Fundamentals of Data Structures with C 209

Program 6.6
Finding a node in the list

int Find (NODE first, int k, int *x)

{
int index = 1; /* indexing the nodes */
if (k < 1) return 0;
while (first && index < k)
{
index++;
first = first->1link;
}
if (first) /* kth element found */
{
*x = first->info;
return 1;
}
return 0; /* kth element not found */
}

6.7.7 Erasing all nodes in linked lists: Destroy ()

Freeing of a node in a linked list, when it is no longer useful must be done for efficient
memory management. Some compilers take care of this by deallocating all dynamically
allocated memory before they return to the calling routine. However, there are
compilers that may leave this work to the programmers. What ever be the strategy
followed by the compilers, we shall assume that it is our responsibility to deallocate all
memory allocated for the nodes in a linked list. The function Destroy () does this
(see program 6.7). '

Program 6.7
Delete all nodes

void Destroy (NODE first)
{ /* delete all nodes in the linked list */

NODE next;
while (first)
{

next = first->1link; /* go to next node */
free(first);

212 Chapter6 » Linked Lists

Program 6.9
Push and Pop
NODE Push (NODE first, int x)
{
NODE q;
g = (NODE) malloc (sizeof(struct List));
g->info = x;
g->link = first;
first = q;
return first;
}
NODE Pop (NODE first , int *x)
{
if (!'first) /* empty list */
{
*x = -1;
return first;
}
*x = first->info;
first = first->link;
return first;
}

Since, £irst always points to the top of the stack, popping means return the element
pointed by first. The pointer first should be advanced to the next node in the list
(see Program 6.9). Only underflow condition need to be checked during pop operation
and overflow case does not arise here because, malloc () allocates memory
dynamically until system memory is available.

6.9 QUEUE AS LINKED LIST

The FIFO structure or a queue can also be implemented using a linked list. We will
again maintain two pointers front and rear for the queue similar to the array
implementation Note that you can design even with a single pointer like an ordinary
linked list. However, the basic definition of queue- rear insertion and front deletion is
followed. Figure 6.11 shows the operation of a queue with few additions and deletions.

: front

front = rear =NULL; ﬂ

rear
Fig. 6.11(a) Empty Queue (b) Insert 10

Fundamentals of Data Structures with C 213

front rear front rear
DGR (B
(c) Element 20 is added at rear (d) Element 30 is added at rear end
front rear
20 30

Fig. 6.11(e) Element 10 is deleted

Queue elements are added at rear end, using the rear pointer. So, we add nodes at the
end of the list. When an elements is to be deleted, the front pointer is advanced by
one node (note the similarly with Pop () of stack). In general, front points to the
oldest element and rear points to the most recent elements.

6.9.1 Queue Insertion and Deletion: InsertRight() and RemLeft()

The Function InsertRight (), adds elements at the rear end based on the rear
pointer. Similarly, RemLeft () removes an element from the front end pointed by
front, provided the list is not empty.

As both the functions alter front and rear pointers, we cannot return the
address of these two pointers. Hence, InsertRight () is to be designed with void
as its return value and also we assume that both front and rear are global variables.
The function RemLeft () can be designed as a function which returns the deleted
element. Both of these functions appear in Program 6.10 and 6.11 respectively.

Program 6.10
Rear Insertion

void InsertRight (int x)
{
NODE q;
g = (NODE) malloc (sizeof(struct List));
g->info = x; g->link = NULL;
if (!front) /* front is NULL)
{ .
front = rear = q;
return;
}

rear->link = q; rear = d;

216 Chapter6 » Linked Lists

current = front;

while (current ->link != rear)
current = current ->1link;

rear = current;

rear->link = NULL;

6.11 ORDERED LINKED LIST

An ordered list is one in which the elements of the list are in a particular order -
ascending or descending. Imagine that a set of names are stored in a linked list in some
arbitrary order. Hence, the names cannot be displayed alphabetically by one scan of the
list. If, however, the list is created with an intrinsic alphabetical ordering the display
function can directly print the names using a single looping structure.

Therefore, it is more efficient if the list in constructed with the ordering built-in.
The objective of this section is to devise a C program to build an ordered list.

The elements are inserted in the existing list keeping the list order in mind even
after the new element is added. Consider the following list of elements that have been
constructed (some how!) as an ordered list.

7,10, 15,20
The corresponding list is shown in Figure 6.14(a).

— 7 [0] s {20/

first

(a) Initial list

...........

{7 | o is[{0)]

first

(b) List after adding element 12
Fig. 6.14 Ordered list

When we wish to add a new element 12, it should occupy after 10 to retain the
ascending order as shown in Figure 6.14(b). To do this, we have three possible cases,
Case (1) the new element x may be less than the first element.
Case (2) the element x may find its location in some kth posotion.

Case (3) the element x may be greater than all the elements in the list (to be
inserted as the last element).

Fundamentals of Data Structures with C 217

The Method and C code

To find the position of x for insertion, start scanning from the first node using p and
maintaining a predecessor or trail pointer, tp. The pointer p will move as long as the
new element x is greater than p->info (see Figure 6.15).

tpi

first ;

g I B o W e e BN
........ :

d x=5

wElE: A
(Case 1) (Case 2) (Case 3)

x=12
Fig. 6.15 All three cases for inserting x

One single for loop will find the location for insertion and is shown below:

tp = 0;
for (; p & p-> info < x; tp = p, p = p->link);
1. When tp = 0; case 1 is handled (for loop will not be executed even once).

2. When tp! = 0 and p != 0; case 2 is handled (tp will be one node behind p -
i.e., tp will point to node 10).

3. When tp !=0 and p = 0; case 3 is handled (tp will point to last node ie., 25).

After the appropriate address of the node is located, the next work is to link the new
node with the existing list. The function SortedInsert () is shown in Program 6.13.

Program 6.13
Ordered linked list

NODE SortedInsert (NODE first, int x)
{ /* To insert elements in ascending order */
NODE p = first;

NODE q; /* new node */
NODE tp = 0; /* trail pointer */
/* move tp to appropriate place, *x/

/* so that x can be inserted after tp */
for (; p &% p->info < x; tp = p, p = p->link);

g = (NODE) malloc(sizeof (struct List));
g->info = x;

g->1link = p;

if (tp)

tp->link = gq; /* insert in middle or end */

220 Chapter6 » Linked Lists

Program 6.14

Simple Merge
/* Merges two lists pointed by pl and p2. */
/* The pointer p3 points to the merged list. */
/* p3 contains the addresses of the elements in pl and p2 */

/*
/*

{

}

in an ascending order. Therefore, list pointed

*/

by p3 is a list of addresses and not the actual elements */
NODE Merge (NODE pl, NODE p2)

NODE p3;
p3 = NULL;

/* store the address of the smaller of pl and p2 */

while (pl && p2)
if (pl->info <= p2->info)

{
p3 = InsRear(p3, pl);
prl = pl->1ink;
}
else
{
p3 = InsRear(p3, p2);
p2 = p2->link;
}
/* copy remaining elements of pl, if any */
while (pl)
{
p3 = InsRear(p3, pl);
pl = pl->1ink;
}
/* copy remaining elements of p2, if any */
while (p2)
{

p3 = InsRear(p3, p2);
p2 = p2->link;

}

return p3;

NODE InsRear (NODE p, NODE x)

{

/* inserts x at the rear of p3 */
NODE t, q;

g = (NODE) malloc (sizeof(struct List));
g->info = (int) x; /* typecast x as int */

g->link = 0;

Fundamentals of Data Structures with C 221

if (p) /* p points to the last node */

{
for (t = p; t->link != NULL; t = t->1ink);
t->link = q; /* add x to rear */

}

else p = q; /* first node */

return p;

The working of Merge () is very simple. In this function, the first while loop scans p1
or p2 which ever has a smaller element and its address is stored in p3. Any node added
to p3 will be at the end so that the ascending order is maintained. For this purpose we
shall use another function InsRear (NODE, NODE) . The second parameter is of
type NODE because we must save the address of p1 (or p2) which is of type NODE.
As explained already, the address is taken as int and stored in the info filed of p3.

As we may have different lengths of p1 and p2, when any one list gets exhausted,
the remaining elements addresses from p1 (or p2) are copied to p3 with the second or
third whi 1e loop. Notice that the addresses are appended to p3 by using InsRear ()
again.

At the end of this function execution, we will have p3 pointing to a list of
addresses of the elements in p1 and p2 in the ascending order. We can display the
contents of p3 using a slightly different technique and is shown in Program 6.14(a).

Program 6.14 (a)
Display of p3
void MDisplay (NODE p)
{ .
NODE ¢t;
if (!p)
{
printf ("Empty List\n");
return;
} >
while (p)
{
t =(NODE) p->info;
printf(*%d ",t->info);
p = p->link;
}

printf("\n");

224 Chapter6 » Linked Lists

Example 6.4: Copying one linked list to another

Problem statement

String copy, strcpy (), in C language is defined in <string.h> header file to copy
the source string to a destination string. Similarly, in this problem, given a linked list
the task is to copy this to a destination linked list.

The pseudo code for this problem appears in Figure 6.21. The destination linked
list is built by reading the elements from the source linked list until the list is exhausted.

Algorithm Copy(dst, src)

{
// src- source linked list.
// dst - destination list - replica of src.
dst = NULL;
while (src) do
{
g = getnode();
get the info from src and put it in q.
if (dst) // add new node at the end.
{
link(last) = q;
last = q;
}
else
dst = last = q; // first node
src = link(src); // go to the next node
}
return dst; // return the copied list
}
Fig. 6.21 Pseudo code for linked list copy
Implementation

The implementation of Copy (dst, src) is similar to strcpy. Copy one node at a
time from src; this means that we add the node at the end of the partial dst list.
Program 6.17 shows this function in C.

Program 6.17
Linked List Copy

void Copy (NODE *dst, NODE src)

{ /* copy src to dst */
NODE q;
NODE last; /* to add nodes at the rear of dst */
if (!src) /* src is empty */

Fundamentals of Data Structures with C 225

{
*dst = 0;
return;
}
*dst = 0;
while (src)
{
g = (NODE) malloc (sizeof (struct List));
g->info = src->info;
g->1link = NULL;
if (*dst == NULL)
*dst = last = q;
else
{
last->link = q;
last = q;
}
src = src->1link;
}

The while loop scans through the source list, src and the info of each node is
added at rear of destination list, dst. For this purpose the pointer last is used. The
if-else construct differentiates whether first node creation is done or more than one
node creation.

Notice that to make it uniform with respect to string copy function, the return type
of Copy () is declared as void. The copied list is to be returned via dst . Hence, it is
declared as a reference parameter. The dst parameter is already a pointer and to obtain
the reference parameter treatment, it should be declared as pointer to pointer or **.
You may invoke the function as,

Copy (&dst, src);

where, dst is the receiving parameter and src is the list whose copy is to be obtained
indst.

6.13 A COMPARISON BETWEEN ARRAYS AND LINKED LISTS

This section addresses an important data representation problem - array or linked list.
We cannot arbitrarily conclude that array (or linked list) is a better choice for a given
problem. First of all, we must decide whether the data size is known in advance or not.
If it is known, then array may be a better choice. Without going into further discussion,
we shall formally list the advantages and disadvantages of arrays versus linked lists.

. e e

P

226

Chapter 6

» Linked Lists

(1) Arrays are formula-based representation of data. The formula stores

successive elements of a list in contiguous memory locations.

In a linked list representation the elements of the list may be stored in any
arbitrary locations. Each element has an explicit pointer (or link) that tells us
the address of the next element in the list

(2) Through accessing of array elements is random (a[5] will take you to 6th

element), for every accessing the associated formula must be evaluated
which consumes lot of time.

In linked lists, no explicit formula is required to move to the next
element, making it time efficient. However, random accessing is not possible
in linked lists. For example, to reach sixth node, you must start from the first
node.

(3) Memory allocation for arrays is done at compilation time, so at the run time

there is no extra work required for memory allocation and deallocation.

In a linked list, on the other hand, memory allocation and deallocation is
done at run time with run time manager software. Generally, in dynamic
memory allocation there are two major problems (1) garbage collection
(2) dangling reference.

(4) The insertion and deletion are two common operations required for most of

the applications. In arrays inserting an element in the middle .requires
shifting of all remaining elements to right side. Similarly, deleting a middle
element requires compaction of array elements. Both these are extra work
and most of the time it is undesirable.

Linked lists are best suited for insertion and deletion without shifting
remaining elements.

(5) The adjacency information need not be stored in the current element, when

the data objects are stored in arrays.

On the other hand, in linked list the next node’s address is stored in the
current node itself. If by chance, the link is lost we can’t get back the
original list. This is not the case with arrays, because arrays remain alive
through out the program execution.

6.14 CIRCULAR LINKED LISTS

A circular linked list is one in which the link address of the last node is connected
back to the first node. Applications can be made simplified and can be run faster with
circular lists. ,

The circular list with n data elements appear in Figure 6.22. The list consists of e;,
e,, e, nodes and notice that the link address of the last node is pointing to first node

e,

You may be wondering that why first is pointing to node e, and not ¢;. In a

- circular list there is no node called first and no node as last, because it is in a circular

Fundamentals of Data Structures with C 227

fashion. When first points to e,, it is easier to add new nodes to the list rather than when
it points to the so called first node e;.
first

d
I_ﬂell:l_#ezl‘l—)leal‘i_’ """"

Fig. 6.22 Circular list

In Section 6.5, we discussed about the ADT for a singly linked list. The same
specification can be used for a circular list as well. But, we shall not show all the
operations for the circular list but only few of them.

6.14.1 Creating a circular list with front insertion Create() function

An empty circular list is one when £irst = NULL and once the nodes are added to
the circular list, the NULL won’t appear in the list. In this section, we will develop a
function Create() to build a circular list such that it can be used for further

operations:
first first first
l
"»r->|><|-l—>|e1|—f'1
(a) Single node q (c) After inserting node x

(b) Node x added to front of e,
Fig. 6.23 Circular list

Figure 6.23 shows a single node case of a circular list. Now to add a new node x to the
front of e,, we must do the following steps.

Step1 Create a new node and make g to point to it.

Step2 1link(qg) = (link)first;

Step3 link(first) = q;
The address of e; will always be available with 1ink (q) or g->1ink. Therefore,
Steps 2 can easily be implemented. This is the advantage of keeping the first to

point to the last node. Step 3 breaks the circular link it was attached to the old first
node with the new first node. The C function Create () is shown in Program 6.18.

e

228 Chapter6 » Linked Lists

Program 6.18
Creating a Circular list

NODE Create (NODE first, int x)

{
NODE q;
q =(NODE) malloc (sizeof (struct List));
g->info = x;
if (first == NULL)
{
q->1ink = q;
first = q;
}
else
{
g->link = first->link;
first->link = q;
}
return first;
}

The first node creation as shown in Figure 6.23(a) is done with an if construct. After
creating the first node the remaining nodes can be constructed using Step 2 and Step 3.

6.14.2 Inserting a node into a linked list: Insert() function

In Section 6.7.2 we developed a similar kind of function using a linked list. We will
again repeat that here, but this time it is for a circular list. In Insert (first, k, x),
recall that we need to insert x after the kth node. Figure 6.24 shows a diagram to insert
xwhenk=0and k0. ‘

first

| L
---§|7|jr—>[5|j—>L3|‘|—>|6|'1—

meie

(@) Whenk =0

Fundamentals of Data Structures with C 229

first

SOTGTIE TR

(b) Whenk #0
Fig. 6.24 Inserting element after kth position

Program 6.23 shows the Insert () function for a circular list. The main difference ot
this program with Program 6.2 is in the £or loop. That is,
for (index = 1; index < k && p != first; index ++)
p = p->link;
Assuming that p is initialized to the first node, ie.p = first->1link; the looping
structure scans the list until p catches £irst. The other difference lies in the if-

else construct. When k = 0, the linking for circular list is little different, see Figure
6.24(a). The steps required for this case are:

Stepl link(q) = link(first);
Step2 link(first) = q;

All cases of k is taken care in Program 6.19.

Program 6.19
Insert x after kth node

NODE Insert (NODE first, int k, int x)

{
NODE p, 4Q; /
int index;
if (k < 0) return first; /* error */

p = first->link;
for (index = 1; index < k && p != first; index++)
p = p->1link;

if (k > 0 && p == first)
{
g = getnode();
g->info = x;
g->link = p->link;

230 Chapter6 » Linked Lists

p->link = q;

first = q;

return first;
}

/* insert x */
q = getnode();
g->info = x;

if (k)

{
g->link = p->link;
p->link = q;

}

else

{

g->link = first->link; /* k = 0 */
first->link = q;

return first;

6.14.3 Deleting an element from the circular list: LDelete()

The objective of the function LDelete () is to delete an element whose info field is
given as a parameter. In this function, if the element is found in the list, then delete the
same. Otherwise, return an error flag with 0 and the list will be unaltered.

Figure 6.25 shows a typical situation where the list contains only one node and
multiple nodes in the list.

pred current first

Fig. 6.25(a) x = 10, middle node case
first

Fig. 6.25(b) x = 10 single node case

Fundamentais of Data Structures with C 231

Deleting a node when it is in the middle is little different from with respect to deletion
in an ordinary linked list. Assuming x = 10 in Figure 6.25(a) with pred pointing to the
previous node of current and also current is not pointing to first, we use

pred->link = current->1link;

In case current points to first, then first should be repositioned to predecessor
node (not shown in figure). That is why we have a nested if-else structure for he middle
node case. When there is only one node in the list (Figure 6.25(b)), it can be deleted
with an i £ statement.

if (first == first->link && first->info == x)
return (first = 0);

In case, x does not match with info, we set the £1ag to 0. The complete C code is for
this problem is showh in Program 6.20.

Program 6.20
Deleting a node

NODE LDelete (NODE first, int x, int *flag)
{
/* X - element to be deleted */
/* flag - l:successful deletion */
/* flag - 0O:element not found */

NODE pred, current;

pred = first;

*flag = 1;

if (!first) { *flag = 0; return 0; }

/* one node case */
if (first == first->link && first->info == x)
{
return (first = 0);
} /* found */
if (first == first->link && first->info != x)
{
*flag = 0;
return first;
} /* not found */

/* get the address of node x */
current = first;
do {
pred = current;
current = current->link;
} while (current != first && current->info != x);

232 Chapter6 » Linked Lists

if (current == first && current->info == x)
{
pred->link = current->link; /* middle node */
first = pred; /* first needs adjustment */
}
else if (current != first) pred->link = current->1link;
else *flag = 0; /* not found */

return first;

6.14.4 Displaying the contents of a circular list: Display()

As circular lists do not have NULL to indicate the end of a list, unlike ordinary linked
lists, here we use a slightly different technique. The Program 6.21 shows this:

Program 6.21
Display of info field
void Display (NODE first)
{
NODE q;
g = first;
if (first) /* if list not empty - display*/
do {
first = first->link;
printf("%d ",first->info);
} while (first != q);
}

The first i f statement is to check whether the list is not empty. If it is so, no node info
will be displayed. When the list is not empty, do-whi le loop (ideal for circular lists)
start displaying from the first node to last node. The pointer variable q does the roll of
NULL in an ordinary linked list.

Perhaps the other operations of circular list are not discussed in this text (see
Exercise). '

Fundamentals of Data Structures with C 233

6.15 STACK AS CIRCULAR LIST

Stack can be represented and in turn implemented using a circular list as well.
Section 6.8 explained how a stack could be implemented using an ordinary singly
linked list. We need to design Push () and Pop () functions as we did earlier.

Though we do not get any special advantage of realizing stack using circular list, it
does help in some applications wherever we need front insertion (push).

first

L ¥
L2 [4216 [1 7

(a) Circular list 5

firs 6

(b) Circular list represented as a stack
Fig. 6.26 Stack as a Circular list

By looking at Figure 6.26, we understand that the function Insert() of
Section 6.14.2 can be used to implement Push (). The only change we require is to
invoke Insert () with k = 0. However, we will write a separate function Push ()
and Pop () to implement a stack.

Generally, the stack pointer points to the top most element, but in a circular list we
shall make f£irst to point to the bottom element. If we add (push) a new element, say
1, it would be inserted above element 7. Similarly, when Pop() is invoked element 7
should be removed from the list (see Figure 6.27).

first a first

!) l
A s T{e [233 1 3le 1

N

q

(b) Pop element 7
* I

(a) Push element 1

Fig. 6.27 Stack operations

234 Chapter6 » Linked Lists

Not worrying about single node case, we can write the main code for Push () and
Pop () as follows,

®* Push: link(q) = link(first);
link(first) = q;
= Pop: g = link(first);

link(first) = link(q);

The new links are shown in broken lines and special cases like empty list, single node
case, etc., must be taken care. Program 6.22 and Program 6.23 show the code for
Push () and Pop () functions respectively.

Program 6.22
Push operation

NODE Push (NODE first, int x)

{
NODE q;
q = getnode(); /* get dynamic memory */
g->info = x;
if (first == NULL)
{
g->link = q;
first = q;
}
else
{
g->link = first->1link;
first->1link = q;
}
return first;
}
Program 6.23
Pop operation

NODE Pop (NODE first, int *x)
{ /* return popped element through x */

NODE q;
if (first == NULL)
{

*x = -1;

return first;

}

/* single node case */

Fundamentals of Data Structures with C 235

if (first == first->1link)
{
*x = first->info;
first = NULL;
return first;
}
/* more than one node case */
q = first->link;
x = g->info; / get the last inserted element */
first->link = g->link;
return first;

6.16 QUEUE AS CIRCULAR LIST

The objective of this section is to develop an efficient technique for queue insertion and
deletion. As usual, maintaining two pointers front and rear make our design simple
and efficient. In this design, rear pointer points to the last element (just like pointer
first)and front pointer points to the earliest element (see Figure 6.28).

front rear

l J
e | Pl to1el 4o

Fig. 6.28 Queue as a circular list

When a new element e,,; is added, then the rear pointer should point to this node and
front is unaltered. When an element is deleted, front points to e; and
link (rear) should point to node e,. The single node case is handled separately and

this occurs when front = = rear. The diagram showing these operations appears in
Figure 6.29. front reat
L L
7[5 [T 6T
- rear

Fig. 6.29(a) Queue Insertion

236

Chapter6 » Linked Lists

\ ! ¥ .
—OBE I 3le [3-

frefit front ;q rear

Fig 6.29(b) Queue Delete

Also note that, in the figure, the elements are inserted as 7, 5, and 6. Hence, during
queue deletion, element 7 is deleted by following the FIFO policy. Subsequent deletion
will return element 5 and front and rear would point to element 6, which is the only
element in the list. Calling QDelete () again will reset both the pointers front and
rear to NULL. For queue insertion we can use,

g->link = front;
rear->link = q;
rear = q;

For queue delete,

q = front->link;
front->link = g->link;
front = q;

Programs 6.24 and 6.25 shows the QInsert() and QDelete() functions
respectively. Remember that our implementation assumes front and rear
pointers as global.

Program 6.24
Inserting an element in the Queue

void QInsert (int x)

{

NODE q;
q = getnode(); /* get dynamic memory */
g->info = x;

if (!front)

{ v
g->1link = q;
front = rear = q;
}
else
{

g->link = front;
rear->1link = q;
rear = q;

Fundamentals of Data Structures with C 237

Program 6.25
Deleting an element from the Queue

int QDelete ()
{

NODE q;
int x;
if (!front)
{
x = -1;
return Xx;
}
/* single node case */
if (front == rear)
{

x = front->info;
front = rear = NULL;
return Xx;

}

/* more than one node case */

x = front->info;

g = front->link;

front->link = g->link; /* drop the first node */
front = q;

return Xx;

6.17 CIRCULAR LIST WITH A HEADER NODE

The circular list discussed in the previous section did not have any specific node called
as head node and a tail node. In fact, such a head and tail nodes cannot be designated
explicitly in a circular list. To avoid this problem and to make programming easier with
circular lists, we add a special node designated as a header node. The header node is
different from other data element nodes as its information field in filled with -1. This is
under the assumption that the regular elements are all positive data. Figure 6.30 shows a
sample circular list with a header node.

e e | >3 m‘

Fig. 6.30 Circular list with a header node

238

Chapter6 » Linked Lists

We always make the pointer first to point to the header node (shaded).
The empty list in these types of circular lists is when the list has only header node.
Additions and deletions are done with respect to the leader node. To check for an empty
list we could use,

if (first == first->1link)

.. .1

Figure 6.31 shows the pieces of C code for the various operations that can be done with
the circular lists (for complete programs see the Exercises).

first
(1) Front Insertion or l—-)r‘_l'l | 'T*;[7 | -I——I g->link = first->link;

Push operation first->link = q;

(2) Front deletion or

- st current current = first->link;
Pop operation

first->link = current->link;

front
$

(3) Rear Insertion or I—;l -1 -}—>| 7 1. rear->link = q;

Qinsert() I I —I—I g->link = front;

rear rear =g,
o
q

(4) Ig';;llte ;ieczl)etlon or first current current = first->link;

first->link = current->link;

L L
L [1305 [

...............................

Fig. 6.31 Various operations of Circular list with a header node

The other operations will be discussed in Section 6.19.2.

Fundamentals of Data Structures with C 239

6.18 DOUBLY LINKED LIST

There is no restriction imposed on the number of links that a node can have. However,
remember that each link is a pointer variable occupying 2 bytes of storage space per -
node. Therefore, if we have n-node list, the storage space needed is 2n bytes only for
the link fields. In an ordinary singly linked list and a circular list we have only one link
for connecting the nodes. Unfortunately, the chain is one way- this means you can
move from left to right and not from right to left.

A list consisting of n nodes, each having two link fields is called a doubly linked
list. That is,

DL = {eb €2, .. "en}

The link fields are called as left link and a right link. The left link of ith node connects
to the (i - 1)th node and the right link points to the (i + 1)th node (see Figure 6.32). '

first=>Te [I [e | =3P 12‘_"

Fig. 6.32 Doubly linked list with » nodes

Notice that, the left link of e;, is NULL as it is the first node and no other nodes exist
prior to it. Similarly, the right link of e, is NULL, as it is the last node and no other
nodes exist after this node. Using right links, it is very straightforward to scan the
doubly linked list from left to right. Also, using left links, you can riloye from right to
left. ' ' : :

The node structure of singly linked cannot be used for a doubly linked list and so
the modified node structure is defined below: ' -

struct DList

{
int info;
struct DList *left;
struct DList *right;

}: .

typedef struct DList *DNODE;

For all our future discussions, we follow this definition and each node will be of type
DNODE. This is to differentiate with respect to the singly linked list structure called
NODE.

6.18.1 Creation of a Doubly Linked List: Create() function

Firstly let us present a method to build a doubly linked list by inserting nodes in front of
first, where first is the doubly linked pointer to the first node. Unlike, singly

240 Chapter6 » : Linked Lists

linked list construction, here we need to distinguish between first node creation and
subsequent node creations.

Let us assume a sample list of 3 elements and show how a new nodes x can be added to
the front of the first element (see Figure 6.33). The Figure 6.33 clearly shows the steps

required.
first

gmlﬂmllzw

firsti

to add element x. For the convenience of the readers, we shall explicitly write those
steps as,

Fig. 6.33 Front Insertion

g->right = first;
first->left = q;
first = q;

Assume that, the dynamic memory for q is available with info set to x and its left
pointer initialized to NULL. The complete C function Create () appears in Program

6.26.

Program 6.26

Creating a Doubly linked list
DNODE Create (DNODE first, int x) -
{ DNdDE q;

q = getnode();

g->info = x;’

g->left = NULL;

g->right = NULL;

if (!'first) /* first is NULL */

{
/* creation of the first node */
first = q;
sreturn first;
}

qg->right = first;
first->left = q;°
first = q;

return first;

Fundamentals of Data Structures with C 241

The program first creates the new node g and makes the initialization. If we are
creating the first node, then £irst points to q and the current node is returned. When
the list not empty, the code shown before is used and updated list is returned to the
calling program.

6.18.2 Insert a new node before a key node: Insert() function

The requirement in this problem is that in a given doubly linked list, we need to find a
key element. If the key node is found, insert the new node (x) to the front of this node
and return the modified list, else return the list to the calling program unaltered.

Let us consider a sample list with four elements and show all possible cases. The
cases include the key being the first node, middle node and the last node. A typical
situation is shown in Figure 6.34, when key = 7 and key = 2.

firct current
4
A TR R R
: b é{rc a §§ d
T T
q key=17 q key=2

Fig. 6.34 Insert x front of key node when key =7 and key = 2

If key = 7, the code required is different from when key = 2. However both the cases are
shown in a single figure. For these two cases (if the code works for these two cases then
it will work for any key value)

key=1T: g->right = first;
first->left = q;
first = q;

Assume that the key is pointed by current (this is dene by establishing a loop), the code
immediately follows in the order specified as a, b, ¢ and d (see the Figure). -

a g->right = current
b . g->left = current->left;
c current->left->right = q;
d current->left = q;

The operations a and b connects the new node g with current and its predecessor. Next,
¢ and d completes the rest by breaking the old links. Observe the ordering used in
linking the new node with the list. Program 6.27 gives a C code to accomplish the insert
operation.

P

242 Chapter6 » Linked Lists

Program 6.27
Insertion

DNODE Insert (DNODE first, int x, int key)
{ /* Insert element x before the key element */
DNODE current, q;
for (current = first;
current && (current->info != key);
current = current->right);
if (!current) /* current is empty */
{
printf ("The Key node not Found!\n");
return first;
}
q = getnode();
g->info = x;
if (current == first) /* first node is the key */
{
g->left = NULL;
g->right = current;
current->left = q;
first = q;
return first;
}
/* key is middle node, insert before current */
g->right = current;
g->left = current->left;
current->left->right = q;
current->left = q;

return first;

6.18.3 Delete the node whose info is given: LDelete()

Often it is required to remove an element from the list based upon the info filed. For
example, the employee records of an organization may be stored in a doubly linked list.
If an employee leaves the organization, his/her record should be deleted from the list.
The parameters required for this function are: ‘

(1) first - pointer to the list.

(2) x —key element to be deleted.

Fundamentals of Data Structures with C 243

1 - successful deletion
3) flag-
0 - key not found

The function can then be invoked as LDelete(first, x, £lag). Since, the list
is modified because of deletion, the return type should be DNODE. Before we present
the program code, the logic for deletion can be shown as a diagram - see Figure 6.35.

first current
L : v
e e et 5

Fig. 6.35 Delete node 2

Once, we locate the node to be deleted, pointed by current, we can use the following
piece of code to delete the node pointed by current.

current->left->right = current->right;
current->right->left = current->left;

For linking node 9 and node 8, the current->right should point to node 8.
Similarly, the left pointer of node 8 should point to node 9. To access the predecessor
and successor of the current node to be deleted can be accessed as just shown. This is
the advantage of having a left and right pointer. This code is applicable for only middle
node deletion and won’t work, when the key is first node. See the Program 6.28 for
more details and for all cases.

Program 6.28
Deleting a node

DNODE LDelete (DNODE first, int x, int *flag)
{ /* delete x and set flag = 1 for successful deletion */

/* and 0 for unsuccessful deletion */
DNODE current;
*flag = 1;
for (current = first; current && (current->info != x);

current = current->right);
if (!current)
{ *flag = 0; return first; }
/* first node is key node and the only node */
if (current == first && current->right == NULL)
{ first = 0; return first; }

if (current == first)

{
first = first->right;/* first one is key node */
first->left = 0;

244 Chapter6 » Linked Lists

}
else
{
current->left->right = current->right;
current->right->left = current->left;
}

free(current) ;
return first;

Whenever 0 is assigned to a link address it means a NULL value, because the value of
NULL is 0. Recall that the definition is already made in stdio.h.

The other operations of doubly linked list like Search, Find, Length, etc. are left as
exercises.

- 6.19 APPLICATIONS

The linked lists, in general, are useful in solving many problems. In this section we pick
some of the very important applications and provide steps to understand the solution
process. All the applications that we discuss will be provided with appropriate C source
code. The applications that we discuss are,

s Polynomial Addition using singly linked lists.
* Adding two long positive integers using circular lists.

6.19.1 Polynomial Addition using a singly linked list

A univariate polynomial of degree d has the form,
c,,xd+cd.1. x‘“ + C4.2. x"'2+. ..+ Co

where, ¢, # 0. The ¢;s are the coefficients and the ¢;s are the exponents. By definition
the exponents are nonnegative integers.
Each cx'is a term of the polynomial. For example,

A(x) =52+ 17x* - 2x ...(6.1)
In this polynomial 5x°, 17x? and ~2x are the three terms and this polynomial is a single
variable, i.e., x. A Polynomial with two variables is as follows,

B(x,y) = 7xy* + 2xy + yx + 10 ..(6.2)

Each variable x and y will have the exponents and a coefficient. For instance, in the first
term of B(x, y) 7 is the coefficient, the exponent of x is 1 and the exponent of y is 2.

Fundamentals of Data Structures with C 245

Representation

We wish to develop a linked list node structure in C language to store each term in the
polynomial. The template for the term w111 consist of three info ﬁelds and a link field as
shown in Figure 6.36.

COEFF | POWER OF X | POWER OF Y | LINK

Fig. 6.36 A polynomial Term with 2 variables

For a single variable, there will be only one exponent filed. The polynormals of
Equations (6.1) and (6.2) are shown as hnked hsts in Figure 6.37.

first—| 5| 3 | J->{17] 2 | {2 | 1]

(a) Linked list for A(x) = 5x° + 17x% - 2x

first

ST T PG i Pl

(b) Linked list for B(x, y) = 7xy* + 2xy + yx + 10
Fig. 6.37 Polynomials as linked lists °

Additions of Two Polynomials

The objective of this section is to develop an appropriate algorithm to represent and
manipulate polynomials. Then, we shall develop a C program for the same. Let us
consider only the basic manipulation — to add two polynomials and the rest are covered
in exercises.

To enable us the addition process easier, we must store the polynomial to be a
sequence of numbers of the form,

(i) for single variable:
C1€),C2€2,C3€3...Ch€y

where, ¢; is the exponent and ¢; is the coefficient.
e >e>ey...>e,
This means that the power of x; are assumed to be in descending order.

(ii) for two variables:
cieidy, caeady . .. Chendy
where, e; is the power of x, d; is the power of y and c; is the coefficient.
e di>eydy> e dry>...>end,

246

Chapter6 » Linked Lists

This means that the power of x in e; is greater than power of x in e,. Suppose if the
powers are same in e), then d, > d,. That is, power of y is d; should be greater than the
power of y in d,.

An example will clarify the above said fact. Consider the polynomial,

x+8y"+Txy* -9y + 15

This polynomial is not in a descending order, hence by following, the above method we
have

Txy* +x+8y° -9y + 15

The descending order of exponents of x and y are shown below.

Coeff pow-x pow-y

7 1 2
1 1 0
8 0 2
-9 0 1
15 0 0

Notice that in terms 7xy® and x, power of x is same. Which one should occur first? In
these circumstances, check the power of y. 7xy” is greater than x, because in the second
term, the power of y is zero. Hence, 7xy” precedes x.

In general, the term c; e, d; will precede c; e, d; provided,

e >e;
or (e; = ey) and (d, > d,)
or (e; = e;) and (d, = d,).

Once the two polynomials are stored in the descending order of the powers of x and/or
¥, addition becomes straightforward and the corresponding algorithm is shown in
Figure 6.38.

Algorithm PolyAdd (p,q)
{
// add two polynomials pointed by p and g
// the resultant polynomial to be returned through r.
while (p && q)
{
// pterm = (cy, e;,d;) and gterm =(c;,e;,d,)
// info includes the power of x and y plus the
// coefficients.
pterm = info(p);
gterm = info(q);

Fundamentals of Data Structures with C

if(el = e; && d1 =
if(c; + ¢c3 !

d,) // same powers
0) // terms whose sum in zero

247

// need not be added to r.

{
pterm = copy e;,d;, (c;+c3)
// put (c; + c;),e; and d; to r.
PolyLast (pterm) ; -
p = link(p); // advance to next term.
a = link(q); ‘
}
else if((e; > e;) OR (e; =e; AND d; > d,))
{ .
r = PolyLast (pterm);
p = link(p);
} _ .
else
{
r = PolylLast(gterm);
g = link(q);
}

y

// copy remaining elements of p, if any
while (P != NULL)

{
‘ r
p

PolyLlast (pterm) ;
link(p); '

u.n

}

// copy remaining elements of p, if any
while (g != NULL)

{
r = PolyLast(gterm);
g = link(q);

}

return r;

Fig. 6.38 Algorithm for polynomial addition

Building the polynomial using a linked list in the descending order of powers of x
and/or y is another big task. The knowledge of ordered linked list should be helpful.
The complete source code for polynomial addition is given in chapter.10. Here, we

shall show only PolyAdd () and PolyLast () functions in Program 6.29.

248 Chapter 6

4

Linked Lists

Program 6.29

Addition of two Polynomials

NODE PolyAdd(NODE p, NODE q)

{

NODE r = NULL;
int sum;
while (p && q)

{
sum = p->coeff + g->coeff;
if ((p->px == q->px) && (p->py == g->py))
if (sum != 0)
{
r = PolyLast(r, p->px, p->py, sum);
p = p->link;
q = g->link;
}
else
{
p = p->link;
q = g->link;
}
else if ((p->px > g->px)
|| (p->px == q->px && p->py > q->py)
|| (p->px == g->px)
&& (p->py == qg->pYy))
{
r = PolyLast(r,p->px,p->py,p->coeff);
p = p->link;
}
else
{
r = Polylast(r,Qg->px,g->py,g->coeff);
g = g->link;
}
}
while (p)
{
r = Polylast(r, p->px, p->py, p->coeff);
p = p->link;
}
while (q)
{
r = Polylast(r, g->px, g->py, q->coeff);

a g->1link;

Fundamentals of Data Structures with C 249

}

}

return r;

NODE PolyLast (NODE p, int fx, int fy, int fc)

{

NODE q;

q = (NODE) malloc (sizeof(struct List));
g->px = fx;

a->py = fy;

g->coeff = fc;
g->link = NULL;

if (!p)
{
p =4
last = p;
return p;
}
last->1link = q;
last = q:
return p;

The function PolyAdd () is written based on the algorithm just shown. It uses another
function PolyLast () whose purpose is to add the terms to the end of resultant
polynomial r. A sample execution of the program appears below:

Example Run

Enter your Choice: 3
7x*1 y*2 + 1x*1 y*0 + 8x"0 y"2 -9x70 y*1 + 15x70 y"0

Polyl Insert
Poly2 Insert
Display Polyl
Display Poly2
Polyadd

Exit

AWl W

Enter your Choice: 4 .
5x22 y*2 + 8x72 y*1 + 10x"0 y*2 + 9x"0 y~1 + 3x"0 y~0

1 Polyl Insert
Poly2 Insert
Display Polyl
Display Poly2
PolyAdd

Ul W N

250 Chapter6 » Linked Lists
6 Exit
Enter your Choice: 5
5x72 y*2 + 8x72 y*1 + 7x™1 y*2 + 1x~1 y*0 + 18x"0 y~2 + 18x~0 y~O0

Example

To validate the working of PolyAdd (), let us consider two polynomials and write
the steps in tracing it.

Polyl = x + 8y* + 7 xy* = 9y + 15
Poly2 = 8x%y + 5x%% + 9y + 10y* + 3

The input function stores these two polynomials in the descending order and is shown

in Figure 6.39.
P = 7xy? + x + 8y* - 9y + 15
g = 5x%y® + 8x%y + 10y? + 9y + 3
pp7li]2] P{1]1]0] ${8T02] {901 F{15[0] 0]

ap5]2[2[8] 2[1] -{w[0]2[{0 1] J+{3]0[0]]

Sl Term to
N(; Terms considered be Result r
added
P q

[7,1,2] 1522 [522] I522]

(7,1,2] [8,2,1] [8,2,1] [5,2,2],[8,2,1]

(7,1,2] [10,0,2] [7,1,2]1 [5.2,2),[8,21],(7,1,2]

(8,0,2] [10,0,2] [18,0,2] [5,2,2],[8,2,11,(7,1,21[1,1,0),[18,0,2]

[-9,0,1] 1[9,0,1] - (5,2,2],[8,2,1],[7, 1, 2),[1, 1, 0], [18, 0, 2]

1
2
3
4 [1,1,01 [10,0,2] [1,1,001 [5,2,2,[8,2,1],(7,1,2][1,1,0]
5
6
7

(15,0,0] [3,0,0] [18,0,001 ([5,2,2),(8,2,1],[7,1,2][1,1,0][18,0,2],[18,0, 0]

p5[2[2] p8[2[1] F{7T1T2] H{1]1]0] F{w[o[2] F{®[o[0]]

Fig. 6.39 Snapshot of Polynomial addition

The resultant polynomial r is,
r = 5x’y? + 8x%y + 7Txy® + x + 18y® + 18

The group of elements represented in angle brackets [and] are the [coeft, power of x,
power of y]. In serial number 6, the addition of coefficients with the same powers yields

